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A Class of Analytical Absorbing Boundary
Conditions Originating From the Exact
Surface Impedance Boundary Condition
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Abstract—A new class of analytical absorbing boundary con-
ditions (ABCs) for the truncation of the finite-difference time-do-
main (FDTD) latticeisintroduced. These ABC originate from the
exact impedance boundary operator and contain both electric and
magnetic fields. The performance of the proposed second-order
ABCsis studied with a two-dimensional FDTD program. The re-
sultsindicate that the proposed ABCswork approximately aswell
asthethird-order analytical ABCs, even if they are essentially as
easy to implement as the second-order Mur ABC. Also, in this
paper, therelation between the so-called Engquist—M aj da oper ator
for the absor ption of planewaves and the exact surfaceimpedance
boundary condition is discussed.

I. INTRODUCTION

HE use of absorbing boundary conditions (ABCs) to

truncate the computational lattice is a very common
feature in finite-difference time-domain (FDTD) simulations.
Several approaches have been taken during the recent decades
to solve this problem. Probably the simplest analytical ABCs
are the first- and second-order Mur ABC [1]. They are easy
to implement, and the computational burden does not become
prohibitive even in large computational domains. The perfectly
matched layer (PML) ABC[2] should be used when only avery
small reflection is alowed. However, the PML requires quite
large computational effort and is clearly more complicated to
implement into FDTD programs.

In this paper, we introduce a new class of analytical ABCs,
which stems from the exact impedance boundary condition
simulating empty half-space. The key characteristic feature of
this approach is the presence of both tangential electric and
magnetic fields in the ABC, which, as we show, leads to a
possibility to derive ABCs with only second-order differentia-
tions, which is approximately as accurate as the conventional
third-order schemes.

We begin this paper with a discussion of an interesting con-
nection between the exact impedance boundary condition for
isotropic half-space and the Engquist—-Majda equation [5] for
the absorption of plane waves. The Engquist—-Majda wave op-
erator operates on one field component. Thus, al the resulting
ABCs are always for only one field component. In Section II,
we introduce the exact surface impedance boundary condition
(SIBC) for modeling the behavior of an isotropic half-space
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with material parameters ¢ and 1. In the case when e = ¢ and
it = pg, the resulting SIBC should work as an ABC. The En-
gquist—Majda wave operator is also derived in this case.

In Section |11, aclass of ABCs connecting the tangential-field
componentsis derived using ageneral form of rational approxi-
mation to approximate theinvolved pseudodifferential operator.
The performance of the proposed ABCs is studied and com-
parisons with some previoudly introduced analytical ABCs are
made with atest two-dimensiona (2-D) FDTD program. These
results are presented in Section V.

II. SIBC AND ITS RELATION TO THE
ENGQUIST-MAJIDA EQUATION

To set up the scene and introduce the necessary relations, we
will now discuss the SIBC and the Engquist—-Majda equation
since both can be used in derivations of analytica ABCs. To
terminate the grid of calculation domain, we should somehow
simulate aboundary with unbounded free space. It isknown that
the Engquist—Majda equation applied to every tangential com-
ponent of the electric field on the boundary can serve this pur-
pose. On the other hand, theoretically, one can demand that the
exact SIBC connecting tangential electric and magnetic fields
on the same boundary be satisfied. This condition can be de-
rived, for instance, using the equivalent-circuit theory [3]. The
SIBC reads

E,=Z, nxH, )

where the impedance operator is of the form

= VtVt

Index ¢ denotes the tangential-field components, and n is the
unit vector pointing outwards from the dielectric (or vacuum)
half-space. To simplify the notation, |et the interface be located
at y = 0 withn = u,. Using the phasor notation, (1) and (2)
for plane waves ¢~ (k= =tk y+k-2) take the form

Z,=n )

ETuT + Ezuz
= kik
t— If2

k2 + k2
-~

=7 -y, X (I{Ixuw + I-VIZuZ> . (3

0018-9480/03$17.00 © 2003 IEEE



KARKKAINEN AND TRETYAKOV: CLASS OF ANALY TICAL ABCs ORIGINATING FROM EXACT SIBC 561

where k; = k,u, + k.u_ isthe tangential component of the
wave vector. After smplifying (3), we obtain the SIBCsfor the
electric-field components

By =p—F @
k2 + k2
1— =
o _-FVI."L‘ - % (krkz-gz - kg-g"r)
E. =n . ©)
k2 + k2
1— 3

Physically, these conditions simply demand that the electric and
magnetic fields are related to each other asin plane waves trav-
eling in an infinite isotropic space, thus, the surface impedance
on the truncation boundary equals the wave impedance of free
space.

Itisclear and it isknown (see[4]) that the impedance formu-
|ation and the Engquist—Majda equation are related, as they ex-
pressthe same feature of the absence of reflection (“matching”).
Let us show how the Engquist—-Mgjda equation can be derived
from the SIBC for the tangential electric-field component £. .
Similar derivation may be done for E,.. We make use of the
y-component of the Maxwell equation

VxH= 6088—:? (6)
in the form
—jkoH. + jk-H, = —cqjwE, (7)
and the equation
—jkyE= + jk.Ey = —pojwH., ®)

to obtain an equation for the £_-component only

k2 + k2 -
<k\/1— 3 +ky> E.=0. ©)

Finaly, transforming the £’s to partial differential operators
(8/8t «— Dy, etc.), we obtain

This is the Engquist—-Majda pseudodifferential equation. With
different approximations of the square root, a class of analytical
ABCs can be derived, asiswell known from the literature.
One can observe that, in this derivation, the Maxwell equa-
tions have been used once more, which involves differentiations
of the fields. The same can be said about the ABCs derived
from the one-way wave equation. The wave equation aready
contains second-order derivatives of the fields. On the other
hand, the impedance boundary condition follows directly from
the Maxwell equations. Aswe aready pointed out, the SIBC is
simply the relation between the electric and magnetic fields in
plane waves. This suggests that one can expect to obtain a better

accuracy from an ABC if the same approximation for the square
root isused in the SIBC as compared to ABCs based on the En-
gquist—Majda operator or on the one-way wave equation. This
possibility will be explored below.

I11. DERIVATION OF A CLASS OF ANALYTICAL ABCs

In the following derivation, we consider the 2-D TM, case.
Let usfirst introduce the rational approximation of the function
v1—zZontheinterval —1 < z < 1 intheform

22 a + bx?

. 11
1+ dx? (11)

Using this approximation, (5) takes the form
(ak2 n bki)E - —n(/&’ n dki)I—VI,,, (12)

with n = \/jo/€0. Using the relation k* = w?/c? with the
Fourier-transform pairs jw « 9/9t and —jk, «— 3/0x, we
obtain the partia differential equation (PDE)
g@QEZ baQEZ _.n 9’H, B 9’H,
2 ot? dx2 2 o¢2 K Ox?
It is worth noting that the second-order time derivative of H,
can be expressed using the electric field E.

9%H, _ A*E,

(13)

— . 14
ot? 1 Oyot (14)
The resulting equation is
a O’°FE. O?E. 10°E. 0*H,
— == - 1
2 ot2 +0 oz? c Oyt K> (15)

We discretize this equation about an auxiliary lattice point, lo-
cated a half-cell away from the interface. Note that we do not
haveto neglect any spatial or temporal differences. Theresulting
update equation for the electric field is

E. |1 ¢
2alAy
= _p 7! 7‘(@ no4 R R )

7,1 + CAt+CLAy [7,,0 + [7,,1

cAt — aAy

— " (EMT+E. ’P—l)

cAt + alAy ( il T Ezlio

_ b(cAt)* Ay L R O U o O e

Az?(cAt + aly) \ E:|ly10—2E[70 + E:[{_1 o
nd(cAt)? Ay

Az?(cAt + aAy)

n+1/2 n+1/2 n+1/2
. <Hw[i+1,1/2 - 2Hw[i,1/2 + Hw[i—1,1/2+> (16)

Hw[n—l/Q —2H$[n_1/2+H3;[n_1/2

i+1,1/2 i,1/2 i—1,1/2

It may be noticed that, inthe casesa = 1,5 = d = 0 and
a=1,0b= -1/2,d = 0, thisnew ABC reduces to the first-
and second-order Mur ABCs, respectively. It iswell known that
these ABCs, however, are not quite good because they are based
on rather coarse approximations of the square root in (11). By
choosing the coefficients of the rational approximation appro-
priately, we obtain much better ABCs than the second-order
Mur ABC, while retaining an essentially similar complexity of
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the update equation. A table of coefficients corresponding to dif-
ferent approximation methods designed to approximate (11) can
be found in [9].

Usually, the third-order ABCs resulting from the rational ap-
proximation of the squareroot intheform of (11) areformulated
as third-order PDEs for one field component. We will show in
numerical examples that we obtain similar performance by our
second-order PDE where both the electric and magnetic fields
are present. Our analysis yields similar results as presented by
Wang et al. in[6] and Ramadan and Niazi in[7] inthe 2-D case,
but the starting point is different, and our derivations establish
the connection between SIBCs and ABCs. We next extend the
proposed method to the general three-dimensional (3-D) case.

IV. ANALYTICAL ABCsIN THE 3-D CASE

In the 3-D situation, the derivatives in the numerator of
(5) do not drop out. Hence, the analytical ABC cannot be
directly formulated as a second-order PDE. The reduction of
order is, however, possible if we use Maxwell’s equation and
the following definitions:

Aa: :ﬁEZ
nk
v ky .
A, =— —F,. (17)
nk

With these definitions, we have the following equations rel ating
the electric field and the just-defined auxiliary field quantities

<kky +ak? + b(k;i + kQ))E _ nd(k;i + k?)ﬁm
<kky +ak? + b(k;i + k2)> B, :nd(kg + kg)/iz. (18)

Transforming these equations into the time domain, we obtain
the following PDEs:

PL o (25 2B
oyot ¢ Ot2 ox? 022
— dne <82AE + —82A3¢> =0
ox? 07?
0’E, a0’E, 8’E, O’E,
oydt ¢ 08 <8a:2 T o )
2 2
+ dne <aafj + 88;%) = 0. (19)

These PDEs can be discretized in asimilar way asin two dimen-
sions. The definition of the auxiliary field quantities A, and 4,
does not induce extra complexity to the FDTD agorithm since
they are actually already calculated in the normal Yee updating
scheme as parts of the magnetic-field components H,, and H.,
respectively.l Thus, we just need to save those components for
later use in the discretized version of (19). As an example, con-
sider the magnetic field H,.. We may think that we split the H,

1The subindexes of A refer to these two magnetic-field components.

as H, = A, + B,. We can then update the auxiliary variables
A, and B, according to

[n+1/2 —A [n71/2 _ At

Tli,j4+1/2,k+1/27 “ Tl j+1/2, k+1/2 Loy
: (Ez[i,j+1,k+1/2_Ez[?,j,k+1/2)

At

n—|—1/2 _ n—1/2
Ba [i,j+1/2,k+1/2— Ba [i,j+1/2,k+1/2 + oAz

: (Ey[i,j-l-l/Q,k—l—l_Ey[2j+1/27k) . (20)

These update equations are only needed on the boundary. After
updating the A’sand B’s, we add them together to get the mag-
netic fields on the boundary.

The ABCs in (19) are analogous to the 2-D ABCs in a
sense that the second-order Mur ABC can be recovered by
suitably choosing the parameters. However, in contrast to the
Engquist—-Majda conditions, third-order accuracy is expected
with these second-order conditions when a better rationa
approximation is used.

V. VALIDATION OF THE ABCs WITH COMPARISON STUDIES

To study the performance of the ABC in (17), we have con-
structed a 2-D test lattice with the size of 20 x 200 cells. The
source is a hard source at the center of the lattice with the time
dependence

1
- [10 — 15cos (27 fnAt) + 6 cos (4 fnAt)
- 20,100 = — cos (GanAt)} ,

0, n>30

n < 30

(21)

where f = 1 GHz, At = 0.9999Az/(v/2¢) and Az = Ay =
0.015 m. This pulse has a very smooth decay to zero. The re-
flection errors are studied on the left-hand side of the lattice.
The local error calculated at time step n = 150 is shown in
Fig. 1. It is clear that our ABCs corresponding to the Padé ap-
proximation (a = 1, b = —0.75, d = —0.25) and the Cheby-
shev on a subinterval (¢ = 0.99973, b = —0.80864, d =
—0.31657) approximation of the square root in (11) are much
better than the second-order Mur ABC. To enable comparisons
with a third-order method, the Liao’s third-order ABC [8] was
implemented. Actually, the performance of the proposed ABC
with Chebyshev on a subinterval is seen to be about as good as
that of the third-order Liao’s ABC. The standard discretization
of the third-order analytical PDE produces exactly the samere-
sultsasthe proposed analytical ABCsbased on the second-order
PDE, thus they have not been plotted in this figure.

L et usnext study theglobal errors, which are probably abetter
measure for the performance of the ABC, since the squared er-
rors are calculated and spatially summed over the whole 2-D
FDTD lattice. The global errors as a function of time steps are
shown in Fig. 2. It is evident from this figure that our second-
order ABCs perform much better than the second-order Mur’s
ABC. Inthe case of Chebyshev on asubinterval, the global error
is seen to be even smaller than for Liao’ s third-order ABC. For
time steps from 0 to 70, it is seen that the Padé approximation
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Fig. 1. Local error on one side of the lattice at time step n = 150.
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Fig. 2. Global error power reflected back to the lattice as a function of time.

provides the smallest global error. This is natural because the
Padé approximation corresponds to having a triple zero of the
wave reflection for normal incidence and, at earlier times, the
components propagating at grazing angles are small. The decay
of the global error after approximately n = 150 just reflects
the fact that the source has gone to zero some time ago and the
errors become smaller.

Comparison of second-order Mur and higher order Lindman
ABCswith PML ABCs can be found in [10Q]. It is evident that
PMLs outperform those analytical ABCs. However, the use
of analytical ABCs allows the efficient and accurate enough
solving of many practical problems without the need to invoke
PML ABCs.

V1. CONCLUSIONS

A new class of analytical ABCs has been derived and some
comparisons have been made with other analytical ABCs.
These new ABCs contain both electric and magnetic fields

and, physically, they are closely related to the exact SIBC. In
the 2-D case, it was found that, by keeping both the tangential
electric and magnetic field in the derivation, we may reduce the
order of the PDE from 3 to 2 while keeping the performance of
the third-order ABC. In the 3-D case, we may reduce the order
of the PDE by introducing two auxiliary variables that can be
conveniently updated in the standard Yee algorithm. Also, the
connection between an exact SIBC and the Engquist—-Majda
analytica ABC has been discussed for better understanding
of the background of the new method.
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